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Abstract— Understanding the semantic characteristics of the
environment is a key enabler for autonomous robot operation.
In this paper, we propose a deep convolutional neural network
(DCNN) for the semantic segmentation of a LiDAR scan into
the classes car, pedestrian or bicyclist. This architecture is based
on dense blocks and efficiently utilizes depth separable convolu-
tions to limit the number of parameters while still maintaining
state-of-the-art performance. To make the predictions from the
DCNN temporally consistent, we propose a Bayes filter based
method. This method uses the predictions from the neural
network to recursively estimate the current semantic state of a
point in a scan. This recursive estimation uses the knowledge
gained from previous scans, thereby making the predictions
temporally consistent and robust towards isolated erroneous
predictions. We compare the performance of our proposed
architecture with other state-of-the-art neural network archi-
tectures and report substantial improvement. For the proposed
Bayes filter approach, we show results on various sequences in
the KITTI tracking benchmark.

I. INTRODUCTION

In the last decade, the research towards self-driving cars
has picked up a staggering pace. The main objective of this
technology is to make our roads safer than ever before [1].
A key ingredient to realize the goals of autonomous vehicles
is a robust perception system, where the main objective is to
understand the environment in which the robot is operating,
through a variety of sensors that a robot is endowed with. In
this paper we focus of semantic scene understanding of urban
outdoor environment using 3D LiDAR scans. Understanding
the semantics is necessary, as it paves the way for robust
visual localization [18, 22], efficient mapping [26], among
several other tasks.

In this paper we propose a deep convolutional neural
network (DCNN) architecture for the task of semantic seg-
mentation of a 3D LiDAR scan into the following semantic
categories: car, pedestrian and bicyclist. Recently, deep
neural network based methods have lead to breakthroughs
in several vision tasks, such as classification [27, 9, 11],
detection [24, 23, 16, 31, 20] and segmentation [17, 4, 25, 3,
13, 29, 30]. Majority of these methods are based on camera
images [27, 9, 11, 24, 23, 16, 17, 4, 25, 3] and few methods
have focused on using 3D LiDAR scans [29, 30, 31, 20].
Our proposed architecture is based on dense blocks [11].
To reduce the number of parameters, we replace the stan-
dard convolution layers with depth separable convolution
layers [6] for dense blocks in the decoder. This allows
us to reduce the number of parameters by a significant
amount while still having competitive performance. Standard
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Fig. 1: Illustration of semantic segmentation with our pro-
posed methods. In the top row ((a)-(c)), we show the output
of our proposed DCNN, for three consecutive scans. In the
top left image, points on a car (color green) are correctly
classified, but in subsequent scans, points on the same car
are partially ((b)-(c)) misclassified as background. In the
bottom row, we show the output of our proposed binary
Bayes filter. For all the scans, points on the same car are
correctly classified.

DCNN architectures treat each example independently and
do not use any previous or prior information. Especially in
the case of perception in robotics, the data is sequential.
To leverage over this sequential nature of information, we
propose a Bayes filter approach for making our segmentation
results temporally consistent. More concretely, we use a
Bayes filter with a static state, where static in this context
means that transition between different states is unlikely,
which is true for semantic classes. This approach neatly
combines the current prediction of the neural network, with
the information accumulated from previous scans. In our
previous work [8], such an approach was part of our method
to classify points in a 3D LiDAR scan as non-movable,
movable and dynamic. We illustrated its advantages through
qualitative results. In this paper, we thoroughly analyze our
method by evaluating our approach on various sequences of
KITTI tracking benchmark and report both qualitative and
quantitative results.

The main contributions of this paper include a DCNN for
semantic segmentation of LiDAR scans into the classes: car,
pedestrian and bicyclist. We compare our DCNN with state-
of-the-art DCNNs [29, 30, 28], proposed to solve the same
task. To justify different architecture design choices and gain
further insight towards them, we also present an ablation
study. Our next contribution is a Bayes filter approach for
making the predictions of the neural network temporally



consistent. This approach leverages over the sequential nature
of the input data stream and makes our segmentation system
robust towards sporadic erroneous prediction. For compari-
son, we use our proposed architecture as a baseline method.
The dataset, code and learned models is available here. !

II. RELATED WORK

With the advent of deep neural networks, a significant
progress has been made towards solving a variety of tasks,
including the task of semantic segmentation. Regarding 2D
images, a plethora of research has been done in last few
years [17, 25, 3, 13, 4], pushing the boundary of state-of-
the-art results to the limit. A similar progress has not been
in the field of semantic segmentation of 3D pointcloud data
due to inherent differences in the two data modalities. In
the case of 2D images, the input data to the network is
fixed but in the case of 3D data, multiple representations
are possible. Regarding the current task, the most commonly
used representation are either a collection of 3D points
or projecting the pointcloud on a 2D image. For the first
representation, the PointNet architecture proposed by Qi
et al. [19] is a popular choice for learning from unordered
pointcloud. They propose to use a multi layer perceptron,
for learning features from individual points and then use a
symmetric function to combine features learned from points,
as a global representation. A symmetric function is necessary
in this case, in order to make the learned representation
invariant to the permutations of the input point set. For the
task of classification, the learned global representation is
sufficient but for segmentation they propose to combine the
global representation with learned local features. Extending
PointNet, they proposed PointNet++ [21]. The extension in-
clude hierarchical learning, where a set of points (centroids)
are sampled from the input point set and then points in the
neighborhood of the centroids are grouped together, which is
then followed by the PointNet architecture. The grouping of
points in the metric space, enable learning of local contextual
information. They have shown results primarily on indoor
sequence for the data collected from RGB-D sensors. In our
case, we use a LiDAR scanner for segmentation of urban
outdoor environments. The data from LiDAR scanner is
sparser in comparison to the RGB-D sensor and the outdoor
environment is more spread out in comparison to confined
indoor spaces. In our case, we use the second representation
i.e. projecting the 3D LiDAR scan on to a 2D image. This
allows us to represent a LiDAR scan in a compact fashion
and furthermore the advancements made in the field of
semantic segmentation using 2D images can be used as well.

Focusing on the task of semantic segmentation using 2D
images, one of the initial architectures was proposed by Long
et al. [17]. They proposed an encoder-decoder style, fully
convolutional network (FCN) architecture and other archi-
tectures since then have followed the same paradigm. Jégou
et al. [13] proposed a dense block based DCNN for the task
of semantic segmentation. The main differences between our
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DCNN and theirs is that we use depth separable convolution
layers for dense blocks in the decoder. To down-sample
the feature maps they proposed a transition down block
comprising of a composite function implementing different
operations. We replace this block with a single max-pooling
operation and show that instead of a composite function, this
single operation is sufficient. In the presented ablation study,
we justify these proposed changes.

We compare our proposed architecture with the archi-
tectures proposed in [29, 30, 28]. The first architecture
proposed by Wu et al. [29] is based on the SqueezeNet [12]
architecture. They use fire modules, which first involves
squeezing the feature maps using 1 x 1 filters and then
expanding these squeezed feature maps in parallel using
filters of size 1 x 1 and 3 x 3 and concatenating their outputs
at the end. Using three max-pool layers they down-sample
the feature maps only along the width dimension and to up-
sample the feature maps they again use fire modules in the
decoder. Last layer of their neural network architecture is a
recurrent CRF and the complete architecture is trained end-
to-end. In our ablation study, we compare with their proposed
down-sampling technique.

They further improve this architecture in [30] by using
a binary mask as an additional input channel. This mask
indicates existence of a LIDAR measurement corresponding
to a pixel location. Along this they also introduce a novel
context aggregation module to limit the error introduced by
missing LiDAR measurements and furthermore in order to
tackle the class imbalancing problem they use focal loss [15]
for training their DCNN. The last method we compare with
is the DCNN proposed by Wang et al. [28]. Similar to the
neural network architectures proposed by Wu et al. [29], their
network architecture is also based on SqueezeNet. They also
Squeeze Excitation blocks [10] after the initial fire modules
and at the end of the encoder use an enlargement layer which
is based on the Atrous Spatial Pyramid Pooling [5].

III. NETWORK ARCHITECTURE

In Fig.2 we illustrate the complete framework for semantic
segmentation of a LiDAR scan. The first step is to project
the scan onto different 2D images and each such image
encodes a specific modality. These images are then stacked
together and are passed through our proposed DCNN for
semantic segmentation. The segmentation mask predicted by
the DCNN is then projected back to the LiDAR scan to infer
pointwise semantic labels.

For the task of semantic segmentation we a propose a
novel fully convolutional DCNN architecture called DBL-
iDARNet. Our architecture is based on dense blocks and
is shown in Fig.2. Similar to other DCNN architecture
proposed for the task of semantic segmentation [13, 17, 25],
our network is also comprised of an encoder for learning
the features required for the task while down-sampling the
feature map size and a decoder to up-sample the feature maps
so that the last hidden layer has the same spatial resolution
as the input image. In the encoder, we have two convolution
layers (conv_0Q and conv_1), three dense blocks (db_0, db_1
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Fig. 2: Our proposed semantic segmentation framework. In the first step we project a LiDAR scan onto five 2D images
and encode the following modalities: depth, surface reflectance intensity, 3D coordinates(x, y, z). These images are then
stacked together, fed into the proposed CNN architecture, and the output is the predicted segmentation mask (bottom left).
The segmentation information is then projected back to the scan to infer the semantic labels for each point in the scan.
Our proposed architecture for semantic segmentation. In the encoder we have two convolution layers (conv_0 and conv_1),
two max-pooling layers and three dense blocks (db_0, db_1 and db_2). In the decoder we use two up-convolution layers
to up-sample the feature maps, two dense blocks (db_3, db_4) with depth separable convolution and one convolution layer
(conv_2). We use skip connection to concatenate feature maps from the encoder, in order to recapture the details lost due

to up-sampling.

and db_2) and two max-pooling layers to down-sample the
feature maps 4x in comparison to the spatial resolution of
the input image. In the decoder we use two up-convolution
layers to up-sample the feature maps and use two more dense
blocks with depth separable convolution layers. To limit the
number of learnable parameters in the decoder, similar to the
architecture proposed by Jégou et al. [13], in our proposed
architecture the input to the up-convolution layers is the
feature maps learned by the dense block prior to the up-
convolution layer instead of all the features maps learned
till that point. For instance the input to the layer up_conv_0
is only the feature maps learned by the dense block db_2.
To recapture the information lost during up-sampling we use
skip connections to concatenate the feature maps from the
encoder to the output of the up-convolution layers.

The input to our proposed architecture is a five channel
2D image, which is generated after projecting the 3D LiDAR
scan onto a spherical plane. This channels encode follow-
ing modalities: depth, surface reflectance intensity and, 3D
coordinates(x, y, z). The resolution of the image after the
projection is skewed i.e. the height of the image is smaller
than the width since the vertical field-of-view of the scanner
is lower than the horizontal field-of-view. In comparison to
the data captured from standard RGB cameras, where the
height and the width of the image are similar, in our the
case the height (64) is 8x smaller than the width (512) of
the image.

To limit the number of operations within different layers,
make the architecture memory efficient and increase the
receptive field, a common practice is to down-sample the
feature maps, where the down-sampling rate varies from

16x to 32x, depending on the task. For the task of se-
mantic segmentation where dense pixel wise prediction is
required, a large down-sampling rate can lead to decrease
in performance [5]. Since height of our input image is 64,
reducing the feature map size 16 or 8§ x will result in a feature
map with height dimension as 8 or 4, thereby resulting in
a significant loss of information. Therefore, to arrest the
information lost due to down-sampling operation we only
reduce the feature map size 4 x. Other methods learning from
images of same resolution have proposed down-sampling
the feature maps 8x ([29, 30]) but only along the width
dimension and keeping the height dimension unchanged
or down-sampling 4x and use dilated convolutions in the
last layers of the encoder [28]. In the ablation study, we
report results for a network where we down-sample 8x
along the both spatial dimensions to justify our decision
of down-sampling 4x. We also train a network where we
down-sample only 4x but only along the width dimension,
to compare with the down-sampling method proposed in
[29, 30].

The complete details regarding the dimensions of each
layer or block and different associated hyper-parameters is
reported in Tab.I. The kernel size of the filter for all the
convolution and up-convolution layers except conv_2 is 3 x 3.
In the last layer we use a filter of size 1 x 1 to reduce
the number feature maps to the number of classes. The
stride for each convolution layer is set to 1 and the stride
for up-convolution layer is set to 2. For all dense blocks
the growth rate parameter is set to 16. The number of
features learned within a dense block is growth rate times
the repetition, where repetition is the number of times the



TABLE I: Architecture

Layer name|Dimension (Hx W x C)|Repetition|Depth separable
conv.0 |64 x 512 x 48 - No
conv_l |64 x 512 x 48 - No

db_0 64 x 512 x 144 6 No
db_1 32 X 256 x 272 8 No
db_2 16 x 128 x 432 10 No
db_3 16 x 128 x 240 15 Yes
up_conv_0 |32 x 256 x 240 - No
db_4 32 X 256 x 128 8 Yes
up_conv_1 |64 X 512 x 128 - No
db_5 64 x 512 x 96 6 Yes
conv3 |64 x 512 x 4 - No

composite function within a block is repeated. As mentioned
before, the input to an up-convolution layer is only the
number of feature maps learned in the previous dense block
and therefore the output of the db_3 only contains the feature
maps learned within the block (16x15), in contrast to output
of db_2 which consists of feature maps learned within the
block (16x10) concatenated with the number of input feature
maps (272). We use skip connection as showed in Fig.2. The
input to the dense blocks in the decoder (db_4 and db.5) is
concatenation of the feature maps learned by the previous
up-convolution layer and the output of the dense block (in
the encoder) with same spatial resolution. In this case the
input to db_4 is the output of up_conv_0 concatenated with
the output of db_1.

A. Training

Our complete network architecture is implemented in Ten-
sorFlow [2]. We use the dataset provided by Wu et al. [29],
consisting of 8057 images for training and 2791 images
for testing. We use softmax cross-entropy loss and use
the Adam optimizer [14] with a learning rate of le™?,
weight decay of 5e~* and batch size of 2. Among the three
classes, the point measurements from cars is significantly
more than the measurements from either pedestrians or
bicyclists, mainly because of the inherent difference in the
size of the geometrical structure. This leads to the problem
of class imbalancing, where some classes in the training
data overwhelm the classes which are under represented. To
tackle this we use a weight balancing technique and assign
larger weights to points belonging to the class pedestrians
and bicyclists in comparison to points belonging to the class
cars and background.

IV. BAYES FILTER METHOD

In the Sec.III, we proposed a novel DCNN architecture
for semantic segmentation of a LiDAR scan into different
categories. The output of the network is the predicted soft-
max probabilities of a point in a scan belonging to different
categories. Since this prediction is performed independently
for different scans, in this section we introduce a novel Bayes
Filter approach to make our pointwise prediction temporally
consistent. This approach assumes the scans are sequential
with significant overlap and the objective is to leverage
over this sequential nature of information and make our
prediction robust to isolated erroneous predictions from the
neural network.

The semantic state of a point is static, i.e. it remains
same over time and transition between these states is un-
likely. For each point, we use three separate binary Bayes
filters with static state, to estimate the belief for each class
independently. To estimate the belief for a class ¢, for a
point p’ € R? in a scan at time ¢ , we first define a binary
random state variale Of = {0,1}, where O% = 1 indicates
that the point belongs to the class ¢ and O) = 0 indicates
the opposite. Without loss of generality, from now on, we
would write Bel(O! = 1) as Bel(O%) and Bel(O! = 0)
as Bel(—0?%). The current belief Bel(O!) depends only on
the predictions of the neural network, 561”5, for the class c as
shown in Eq.(1).

Bel(Op) = P(O; | &), ey

where, §§:t are softmax scores for the class c. We define
such binary random variables for each class and estimate
the belief for each class independently.

Using Bayes rule and Markov assumption we can rewrite
the Eq.(1) as following,
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Using Bayes rule for the term P(¢L | O!), Eq.(2) can be
modified as following,
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We now introduce the log odds notation, where odds of

an event z is defined in Eq.(5) and the log odds are defined
in Eq.(6)
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The odds for a point p* having the semantic class ¢ can be
estimated by dividing Eq.(3) with Eq.(4). The odds is defined
in Eq.(7) and the log odds are defined in Eq.(9),
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where, the current measurement is defined as following,
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In Eq.(9), 1;(O?) are the log odds for the belief at time ¢,
the first term on the right side in Eq.(9) are the log odds for
the current measurement, /;_1(O") are the log odds for the
previous belief and Io(O!) are the log odds for the initial
belief. Through this formulation, our inference not only
depends on the current measurement (P(O? | £¢)), but also
on the previous measurements, incorporated through the re-
cursive term ;1 (O%). To enable this recursive behavior, data
association between points in consecutive scans is required
and for this we use our method of estimating pointwise
motion proposed in [7]. We performed data association by
aligning scans using the estimated motion and choosing
the nearest point on the basis of Euclidean distance as
the corresponding point. As mentioned before, we estimate
1:(OY) for each class separately and for the inference we
choose the class with the largest odds.

V. RESULTS
A. Network Architecture

To evaluate our proposed DCNN, we use the test set from
the dataset provided by Wu et al. [29]. We report class wise
IoU and compare our results with two DCNN proposed
by Wu et al. ([29],[30]) and the network architecture pro-
posed by Wang et al. [28]. In Fig.3, we show qualitative
semantic segmentation results. Our proposed DCNN is able
to segment objects of different classes successfully (top
row) and is able to tackle cases where an object is heavily
occluded (middle row). We also illustrate a case where our
method sometimes over segments a bicyclist into classes
pedestrians and bicyclists. This primarily happens because
a person is part of both classes, in one case a person is
walking and in the other case a person is riding a bicycle.

In Tab.Il we report the class wise IoU and mean IoU
for different methods. Our proposed DCNN outperforms the
existing state-of-the art DCNNs proposed for the same task
and has a better IoU for all the three classes. In the case of
pedestrian, the increase in IoU is around 70%, for the class
bicyclist the increase is around 17%, with an overall increase
in mean IoU by 16%. These results indicate a remarkable
improvement over the existing DCNNs proposed to solve
the same task. Comparing the runtime, our DCNN has the
largest runtime but considering that scan rate for LiDAR
scanners is around 10Hz, our method still provides real time
performance.

Comparing the inter class performance, the highest IoU
is achieved for the class car, whereas the performance
for pedestrian and bicyclist are comparable. Similar trend
is evident for other methods as well. This difference in
performance has three main reasons, firstly the number of
instances of pedestrian and bicyclist is lesser in comparison
to car. Secondly, object in both these classes have a smaller
size in comparison to cars and therefore the number of
points sampled from their surface is significantly lower in
comparison to points sampled from the surface of cars. Due
to these reasons, these two classes are under represented
and as mentioned before, we use weight balancing in order
to have a large penalty for misclassifying points in these

TABLE II: A comparison with other DCNNs proposed for
semantic segmentation of a LiDAR scan. For each method
we report class wise and mean IoU

Method Cars|Pedestrians|Bicyclists|meanloU|t [ms]
SqueezeSeg [29] 60.9| 228 26.4 36.7 8.7
SqueezeSeg w/ CRF [29] [64.6 21.8 25.1 37.1 13.5
PointSeg [28] 67.4 19.2 32.7 39.7 12
PointSeg w/ RANSAC [28](67.3 23.9 38.7 433 14
SqueezeSegV2 [30] 7321 278 33.6 44.8 -
DBLiDARNet (Ours) |75.1 47.4 45.4 56.0 40

TABLE III: Results for ablation study. For each method we
report class wise and mean IoU.

Method Cars|Pedestrians|Bicyclists|meanloU|t [ms]
100 Layer Tiramisu [13] |74.2| 48.7 43.7 555 41
TD block [13] 722 483 41.2 539 43
Down-sample 8x 74.1| 438 39.7 525 43
Down-sample width 4x |74.7| 45.0 38.6 52.8 66
db_3 depth separable 7421 492 36.8 534 41
db_3 + db_2 depth separable|73.6| 41.2 332 49.3 40
W/o weight balance 72.4| 409 35.1 49.5 41
DBLiDARNet 75.1| 474 454 56.0 41

classes. The last reason is the over segmentation of points
on a bicyclist into classes bicyclist and pedestrian as shown
in Fig.3. This misclassification is not a common occurrence
but still hampers the overall performance.

1) Ablation Study: In this ablation study, we justify the
network design choices we mentioned in Sec.IIl. We first
discuss the differences between our dense blocks based
fully convolutional network and the architecture proposed
by Jégou et al. [13].

1) Their architecture consists of transition-down block for
down-sampling the feature maps. This block imple-
ments a composite function comprising of batch nor-
malization, ReLLU activation, convolution layer (1 x 1),
dropout and max-pooling. We replace this transition-
down block by a max-pooling layer. This decision is
based on our empirical findings, which showed replac-
ing this block which contains learnable parameters by
a max-pooling layer helps in reducing the parameters
while maintaining similar performance.

2) As as already mentioned and shown in Fig.2, we use
depth separable convolution layers instead of convolu-
tion layers for dense blocks in the decoder. This again
helps in reducing the learnable parameters significantly
without reducing the performance. The number of pa-
rameters for our proposed network is 2.8M and their
architecture is 3.6M. This large difference between
the parameters is mainly attributed to depth separable
convolution.

The architecture proposed by Jégou et al. [13] consists of
five transition down blocks for down-sampling the feature
maps 32x. They, therefore use five up-convolution layers in
the decoder along with same number of dense blocks. Such
a high down-sampling rate will result in significant loss of
information for reasons discussed before (Sec.III). Therefore
in our implementation of their architecture we only use two
transition down blocks instead of five. In Tab.IIl we report



Fig. 3: An illustration of the semantic segmentation results. In the left column we show the ground-truth segmentation masks
where points belonging to the class car, pedestrian and bicyclist are show in color green, orange and blue respectively. In
the middle column we show the predicted segmentation masks with the same color scheme as the ground-truth masks. To
clearly visualize the differences between the ground-truth and predicted masks, in the last we show the correctly segmented
points in green color and the misclassified points in color red. The top row illustrates the case where our proposed DCNN is
able to successfully segment objects of different classes. The middle row shows a hard case, where a pedestrian is walking
behind the cars and is heavily occluded and our method is still able to correctly segment the pedestrian. The bottom row
illustrates a case where our method under performs. In some cases bicyclists are over segmented into the classes bicyclist

and pedestrian due to presence of a person in both classes.

both class wise and mean IoU for their architecture and
also for a model where we use our architecture but replace
max-pool layers with transition down (TD) blocks. Our pro-
posed architecture outperforms their architecture marginally
while using fewer parameters. Using transition down blocks
instead of a max-pooling layer leads to a slight decrease
in performance as well. These results clearly indicate that
our proposed changes help in reducing the parameters while
improving the performance.

Comparing different down-sampling strategies, we trained
two different models. For the first model we down-sample
8% instead of 4 and for the second model we down-sample
4x but only along the width dimension while keeping the
height unchanged, similar to [29]. As reported in Tab.III,
for the first model (down-sample 8x), the IoU for the
class car remains comparable but a decrease in performance
is observed for the other classes. In comparison to cars,
pedestrians and bicyclists are smaller and therefore a large
down-sampling rate adversely affects these classes in com-
parison to other classes. For the second model, similar to
the first, a noticeable decrease in performance is observed
for both pedestrian and bicyclist classes. Without decreas-
ing the height, feature maps have larger spatial resolution,
thereby requiring more operations. Therefore for this case,
the inference time increases by 20ms. Even though large
down-sampling rate can hamper the performance, especially
for the task of semantic segmentation, it is still required for
increasing the receptive field as well as making the model
efficient considering both the memory and computational
requirements. Our proposed strategy of down-sampling the
feature maps 4x allows us to exploit the advantages of such
operations without losing the crucial information necessary

for predicting accurate segmentation masks.

Depth separable convolution is an ingenious way of re-
ducing parameters, but excessively using it can potentially
decrease performance. To justify this, we train two models,
using depth separable convolution in the last dense block of
the encoder (db_3) and then in last two dense blocks together
(db_3 + db_2). This decreases number of parameters from
2.8M (DBLiDARNet) to 1.9M and 1.4M respectively. In both
cases performance decreases, especially for the second case
the decrease is substantial.

To limit the detrimental impact of class imbalancing on the
overall performance, we use weight balancing. In the loss
function, the contributions made by the under represented
classes are multiplied by a large weight, thereby incurring
a large penalty if points from these classes are incorrectly
classified. The lowest weight is assigned to the background
class, while weights in increasing order is assigned to classes
car, pedestrian and bicyclist respectively. To analyze the
impact of weight balancing, we trained a model where we
did not use balancing and report results for this in Tab.III.
The decrease in performance is evident for all the classes,
where the most under represented class suffers the most with
performance decreasing for the class bicyclist by 22% and for
class pedestrian by 5%. These results highlights the necessity
of using the weight balancing technique.

B. Bayes Filter

To evaluate our proposed Bayes filter approach, we use
the KITTI tracking benchmark. The benchmark contain
20 sequences and to evaluate our approach on all of the
sequences, we split the sequences into two different sets.
We train our network on both sets separately and use the
other set for testing i.e. we train a model on the first set



TABLE IV: Splitting of sequences in KITTI tracking bench-
mark

Seq. ID[# of scans]Cars[Pedestrains[Bicyclists
Set 1
0 153 528 21 153
4 313 908 65 60
5 296 1307 0 139
6 269 661 0 0
8 388 1334 0 0
9 802  [3135 29 0
10 293 673 30 14
11 372 |3579 197 0.0
19 1058 [1411| 6595 306
Set 2
2 229 1127 177 75
3 143 38 0 0
7 799  |2488 67 0
12 77 142 64 42
13 339 123 1096 237
14 105 523 120 0
15 375 899 751 537
16 208 832 2019 271
17 144 0 776 100
18 338 1413 0 0
20 836 6244 0 0

and test the learned model on the second set and then
train on the second set and test on the first set. While
splitting the sequences we assure the number of scans and
the instances of the different classes have similar distribution.
In Tab.IV we report the number of scans in each sequence
and the number of instances of each class in a given
sequence. Among the three classes, number of instances of
class bicyclist is minimum and instances of class car in
large numbers is consistently prevalent across sequences. As
mentioned before, the number of point measurements from
the surface of pedestrians and bicyclists is significantly less
in comparison to the measurements from cars. Therefore
due to limited instances and smaller size, segmenting these
classes is challenging.

For training the network we use our proposed network
with the exact same parameters as discussed in Sec.IlI-A,
with the one difference. In this case the input resolution of
the images are 64 x 324 x 5, in comparison to 64 x 512 x 5.
For evaluating the proposed Bayes filter we use our network
as the baseline method and report comparison with the
segmentation results from the network. In Fig.4, we illustrate
the differences in the segmentation results for a sequence
of six consecutive scans. In the top two rows, we shows
results for our proposed neural network and in the bottom
two rows we show results for our proposed Bayes filter
approach. In the case of neural network, points on a car are
correctly classified in the first scan but in the next few scans,
points on the same car are misclassified as background.
For the same scans, our proposed Bayes filter is able to
consistently classify points on the car correctly. These results
clearly illustrates that our Bayes filter approach successfully
leverages over the sequential nature of the input data, to
correct the segmentation, thereby making our predictions
temporally consistent. In Tab.V, we report class wise IoU for
different sequences, for both our DCNN and the Bayes filter
approach (handcrafted and learned descriptor). In the cases

TABLE V: Class wise IoU for DCNN and the binary object
Bayes filter

Sea. ID DBLiDARNet Object Bayes Filter
9- 'V Cars[Pedestrians Bicyclist|Cars|Pedestrians|Bicyclist
0 [76.2 2.0 29.6 |79.2 2.0 23.6
2 |549| 37.0 0.0 |[55.3| 469 0.0
3 |752 - - 75.5 - -
4 166.6] 40.8 352 (69.1) 474 53.2
5 701 - - 70.0 -
6 [87.2 - - 87.1 - -
7 832 282 - 83.5| 327 -
8 1669 - - 69.9 - -
9 |71.9 18.6 - 729 21.6 -
10 |724 0.0 0.0 |[75.1 0.0 0.0
11 |88.4] 15.6 - 89.6| 153 -
12 |51.5 0.0 4.0 (585 0.0 1.6
13 |242| 507 39.5 |31.3| 50.6 41.1
14 [89.6] 40.2 - 86.3| 426 -
15 |839] 70.1 5.0 857 725 5.0
16 |63.8| 753 545 |64.1) 77.0 60.7
17 - 81.8 0.0 - 83.7 0.0
18 |84.7 - - 84.7 - -
19 [68.4] 66.2 369 [74.0/ 66.1 37.8
20 69.1 - - 69.4 - -

where no instances of a class is observed, we do not report
results as well (indicated by a dash sign). Analyzing the
neural network predictions, our DCNN is consistently able
to segment cars in comparison to the other classes. Since
the LiDAR scanner is mounted on a vehicle, it shares the
same space where other vehicles operate, in comparison to
pedestrians or bicyclist which are either walking or biking
on a sidewalk or a bike lane. This also explains why the
instances of cars outnumbers pedestrians or bicyclists by
a significant margin. In the cases of pedestrians, a high
IoU is achieved for the cases where pedestrians are in
close proximity of the vehicle collecting the sensor data for
instance on a crowded small street or at an intersection. For
some sequences, the IoU for the class bicyclists is zero. In
these cases, majority of times these objects are either far
from the sensor or occluded and in the rare cases they are
misclassified as pedestrians. In the case of LiDAR data, with
the increase in distance the data gets sparser and especially
in the case of bicyclists or pedestrians, the surface is smaller
in comparison to cars and therefore they are not enough point
measurements to a make an accurate prediction.
Comparing the DCNN results with the Bayes filter ap-
proach, across different sequences and classes, an improve-
ment in IoU is consistently observed after using the Bayes
filter approach. For most cases the improvement in IoU is
around 4% to 9% but an improvement of 27% is achieved for
class pedestrian in sequence 2 and staggering improvement
of 51% is achieved for class bicyclist in sequence 4. For cou-
ple of isolated cases, a decrease in IoU is observed after using
the filter approach. The implicit assumption of our Bayes
filter approach is that the predictions from DCNN is seldom
wrong and for cases, the filter uses the previous knowledge
to correct those predictions. In the rare cases where this
assumption is violated, the information accumulated by the
filter spurs from incorrect measurements and therefore the fil-
ter approach needs multiple correct predictions from DCNN
to improve its knowledge in comparison to a single prediction
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Fig. 4: Tllustration of semantic segmentation with the object Bayes filter. In the top two rows ((a)-(f)), we show the output of
our proposed DCNN, for six consecutive scans. In the top left image, points on a car (top left) are correctly classified, but in
subsequent scans, points on the same car are first partially ((b)-(c)) and then completely ((d)) misclassified as background.
In the bottom two rows, we show the output of our proposed binary Bayes filter for the same six consecutive scans. For all
the six scans, points on the same car are correctly classified. These results clearly illustrate that our proposed Bayed filter
method is able to successfully mitigate the sporadic erroneous predictions from the neural network.

needed by DCNN. For instance, in the sequence 0, points
on a bicyclist were labeled as pedestrian more than often,
causing Bayes filter to accumulate the incorrect predictions.

Through these qualitative and quantitative results we show
the importance of our proposed static binary Bayes filter
approach. Having such an approach is especially necessary in
the cases, where the input data is sequential which is seldom
not true in the case of perception in robotics. Through the
Bayes filter approach we completely exploit this sequential
nature of the input data, making our predictions temporally
consistent and report a persistent improvement in IoU across
different sequences and classes.

VI. CONCLUSIONS

In this paper, we proposed a DCNN to segment points
in a 3D LiDAR scan into multiple semantic categories.
Our proposed architecture is based on dense blocks and
uses depth separable convolution to reduce the parameters
while still maintaining competitive performance. It signifi-
cantly outperforms state-of-the-art neural network architec-
tures, with an average improvement of around 16% across
different classes. In the presented ablation study, we justify
our architecture choices. The neural network predicts the
segmentation mask for each scan independently and to make
these predictions temporally consistent, we proposed a Bayes
filter method. Through extensive evaluation on the KITTI
tracking benchmark, we report a consistent improvement



across classes and sequences. These results clearly show the
need of such an approach, especially when the input data
is sequential, which is rarely not true in the case of robotic
perception.
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